Wednesday, May 29, 2019
Air Pressure effects the Speed of Falling objects :: essays research papers fc
ResearchAn quarry that is falling through the atmosphere is subjected to two external forces. The foremost force is the gravitational force, expressed as the weighting of the object. The weight equation which is weight (W) = mass (M) x gravitational acceleration (A) which is 9.8 meters per square second on the surface of the earth. The gravitational acceleration decreases with the square of the distance from the affectionateness of the earth. If the object were falling in a vacuum, this would be the only force acting on the object. But in the atmosphere, the motion of a falling object is opposed by the occupation resistance or squeeze. The drag equation tells us that drag is equal to a coefficient times one half the air density (R) times the velocity (V) squared times a reference area on which the drag coefficient is based.The motion of a falling object rotter be described by Newtons second law of motion, Force = mass x acceleration. Do a little algebra and solve for the acce leration of the object in terms of the net external force and the mass of the object (acceleration = Force / mass). The net external force is equal to the difference between the weight and the drag forces (Force = Weight - Drag). The acceleration of the object then becomes acceleration = (Weight - Drag) / mass. The drag force depends on the square of the velocity. So as the body accelerates, its velocity (and the drag) pass on increase. It will reach a point where the drag is exactly equal to the weight. When drag is equal to weight, there is no net external force on the object, and the acceleration will become equal to zero. The object will then fall at a constant velocity as described by Newtons first law of motion. The constant velocity is called the terminal velocity.What is aerodynamics? The word comes from two Greek words aerios concerning the air, and dynamis, meaning powerful. Aerodynamics is the study of forces and the resulting motion of objects through the air. cosmos ha ve been interested in aerodynamics and loyal for thousands of years, although flying in a heavier-than-air machine has been possible only in the last cardinal years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curve ball thrown by big league baseball pitchers gets its curve from aerodynamics.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.